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Abstract Correctly calculating the structure of metal

coordination sites in a protein during the process of nuclear

magnetic resonance (NMR) structure determination and

refinement continues to be a challenging task. In this study,

we present an accurate and convenient means by which to

include metal ions in the NMR structure determination

process using molecular dynamics (MD) simulations con-

strained by NMR-derived data to obtain a realistic and

physically viable description of the metal binding site(s).

This method provides the framework to accurately portray

the metal ions and its binding residues in a pseudo-bond or

dummy-cation like approach, and is validated by quantum

mechanical/molecular mechanical (QM/MM) MD calcula-

tions constrained by NMR-derived data. To illustrate this

approach, we refine the zinc coordination complex structure

of the zinc sensing transcriptional repressor protein Staph-

ylococcus aureus CzrA, generating over 130 ns of MD and

QM/MM MD NMR-data compliant sampling. In addition to

refining the first coordination shell structure of the Zn(II)

ion, this protocol benefits from being performed in a peri-

odically replicated solvation environment including long-

range electrostatics. We determine that unrestrained (not

based on NMR data) MD simulations correlated to the

NMR data in a time-averaged ensemble. The accurate

solution structure ensemble of the metal-bound protein

accurately describes the role of conformational sampling in

allosteric regulation of DNA binding by zinc and serves to

validate our previous unrestrained MD simulations of CzrA.

This methodology has potentially broad applicability in the

structure determination of metal ion bound proteins, protein

folding and metal template protein-design studies.
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Abbreviations

AMBER Assisted model building with energy

refinement

DFT Density functional theory

MCPB Metal center parameter builder

MD Molecular dynamics

MRD-NMR Metal restrained dynamics nuclear

magnetic resonance

NMR Nuclear magnetic resonance

NOE Nuclear Overhauser enhancements

QM/MM Quantum mechanical/molecular

mechanical

QM/MM MD Quantum mechanical/molecular

mechanical molecular dynamics

RDC Residual dipolar couplings
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RD-NMR Restrained dynamics nuclear magnetic

resonance

RMSD Root mean square deviation

XAS X-ray absorption spectroscopy

PDB Protein data bank

Introduction

Metal ions are estimated to be present in 40 % of all pro-

teins and are involved in a wide range of cellular functions

ranging from catalyzing enzymatic reactions to providing

structural support in proteins (Waldron and Robinson 2009;

Thomson and Gray 1998; Tus et al. 2012). Many proteins

undergo a large change in structure and/or conformational

dynamics upon binding metal ions (Ma et al. 2009;

Mealman et al. 2012). While X-ray crystallographic

methods provide a high-resolution snapshot of a metal ion

bound protein, solution-state NMR remains the experi-

mental method of choice to obtain an accurate ensemble-

guided view of the structure and associated conformational

dynamics of the protein at an atomistic level (Snyder et al.

2005; Yang et al. 2007; Arunkumar et al. 2009; Brunger

1997; Montalvao et al. 2012; Boehr et al. 2009; Eisen-

messer et al. 2005; Tolman et al. 1997; Henzler-Wildman

et al. 2007; Mealman et al. 2012).

Nuclear magnetic resonance structure determination

efforts are, however, limited by a paucity of methods that

accurately represent metal ion coordination complexes in a

protein. As a result it is common practice to use experi-

mentally derived distance and angle restraints with

approximate force constants to constrain metal ions in

place, as in the case when using modified amino acids with

‘‘dummy’’ coordination-covalent bonds to the metal with

other coordination bonds constrained to X-ray absorption

spectroscopy (XAS)-derived distances, or alternatively, to

not include metal ions at all during the structure determi-

nation process (Banci et al. 2007; Arunkumar et al. 2009;

Eustermann et al. 2010; Brockmann et al. 2012; Gao et al.

1998). The use of such approaches introduces possible

errors in describing the metal-binding site as either exces-

sively rigid or too flexible. To the best of our knowledge,

CYANA (DYANA) (Mumenthaler et al. 1997; Guntert

et al. 1997; Lopez-Mendez and Guntert 2006; Guntert et al.

1991; Herrmann et al. 2002), XPLOR-NIH (Schwieters

et al. 2003; Clore and Schwieters 2006), and CNS (Brunger

et al. 1998; Brunger 2007) protocols do not incorporate an

accurate treatment for metal ions. While the Rosetta pro-

gram (Rosato et al. 2012; Ramelot et al. 2009; Raman et al.

2010) provides for an explicit treatment of metal ions

(Wang et al. 2010) based on observed coordination geom-

etries, it is not applicable for novel metal–ligand

complexes. In light of the large number of metal-bound

proteins in nature, it is important that a broadly applicable

general refinement protocol be developed that accurately

represents metal ions in an NMR-derived protein structure.

In this report, we present an accurate and efficient

means by which to include metal ion coordination struc-

tures in the NMR-structure determination procedure by

effectively utilizing NMR-data biased all-atom explicit

MD simulations coupled with QM/MM MD methods

(Allen and Tildesley 1987; Case 2002; Senn and Thiel

2009; Hartsough and Merz 1995). While restrained

dynamics methods that utilize NMR data (RD-NMR) have

been successfully utilized to fold protein structures using

MD platforms, QM/MM methods have been previously

used to study metal ion coordination, and refine the metal

binding site of zinc and copper bound metalloproteins

(Case 2002; Chen et al. 2005; Robustelli et al. 2010; Chen

et al. 2004; Bertini et al. 2011; Calhoun et al. 2008;

Montalvao et al. 2012; Boehr et al. 2009; Showalter et al.

2007; Li et al. 2010; Markwick et al. 2010; Long and

Bruschweiler 2011; Sgrignani and Pierattelli 2012). Using

the approach described here, we implement a metal ion

inclusive restrained dynamics NMR structure refinement

method, denoted as MRD-NMR, in which the metal ions

are modeled using specially developed force field param-

eters that accurately describe the metal ion coordination

and electrostatics in NMR-data restrained MD simulations

that sample on biologically relevant time-scales on the

order of hundreds of nanoseconds (Chakravorty et al.

2012b; Pierce et al. 2012). QM/MM MD simulations

complement and validate the classical force field models.

They account for changes in metal ion coordination and

water exchange while providing extensive sampling, which

is not afforded by QM/MM calculations alone. The accu-

rate treatment of metal ions will correctly account for first

and second coordination-shell effects such as metal ion

mediated hydrogen-bonding interactions and will help

capture the polarizing influence of metal ion binding on the

protein conformation, ultimately leading to a more precise

ensemble of structures. In addition to the accurate treat-

ment of metal ions, structure calculations using the MRD-

NMR methodology benefit from the inclusion of explicit

solvent models, periodic boundary conditions and an

accurate calculation of long-range electrostatics using the

particle mesh ewald (PME) approach (Bertini et al. 2011;

York et al. 1993; Allen and Tildesley 1987; Jorgensen

et al. 1983).

We demonstrate the applicability of our approach by

modeling zinc ions in a previously determined NMR

structure of the zinc-bound conformation of Staphylococcus

aureus CzrA (Figs. 1 and SI.1). CzrA is a zinc-sensing

transcriptional repressor derived from the ArsR/SmtB

family of transcriptional repressors (Ma et al. 2009). It is a
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two-fold symmetric homodimer (Figs. 1, and SI.1) char-

acterized by a winged-helix-turn-helix fold that mediates

high affinity binding to the DNA operator (Arunkumar et al.

2009). Previous studies have determined that CzrA func-

tions by a mechanism of allosteric regulation in which

Zn(II)-binding drives a ‘‘closed’’ DNA-bound conformation

to an ‘‘open’’ and ‘‘flat’’ conformation, thus reducing its

DNA binding affinity by *6 kcal/mol (Arunkumar et al.

2009; Grossoehme and Giedroc 2009; Chakravorty et al.

2012b). The previous NMR structure of Zn(II)-CzrA

reveals an open conformation, and was calculated using a

total of 756 intra- and inter-subunit NOE restraints and 112

backbone amide NH RDC restraints (Arunkumar et al.

2009; Tjandra and Bax 1997; Tolman et al. 1997). This

structure was solved without the inclusion of zinc ions since

the objective of that study was to document that the sparse

nuclear Overhauser enhancements (NOE)/residual dipolar

coupling (RDC)-based structure determination protocol

used on highly deuterated CzrA was sufficiently sensitive to

distinguish distinct allosteric states of CzrA, e.g., Zn(II)-

bound versus operator DNA-bound apo-CzrA (Arunkumar

et al. 2009). The Zn(II)-CzrA NMR solution structure

showed excellent overall agreement with the previously

determined crystallographic structure (protein data bank

(PDB) code: 1R1V) (Eicken et al. 2003), but appeared to

adopt a more open conformation with an average backbone

RMSD of 2.53 Å (Figure SI.2) and better agreement with

the experimental RDC data (Fig. 2). The question arises as

to whether this difference reflects true differences in solu-

tion versus crystallographically determined conformations,

or arises as a result of a lack of structural constraints

associated with structure determination of methyl-protiated,

highly deuterated samples and/or a lack of constraints

resulting from not considering the zinc coordination com-

plex (Arunkumar et al. 2009). We therefore test our MRD-

NMR methodology on this system, and also use it to

Fig. 1 Calculated solution structural ensembles of Zn(II)-bound CzrA

using the MRD-NMR methodology developed here (panels a–c) and

conventional RDC ? NOE methods without including the metal ion

(panels d–f). a Ribbon representation of ten metal ion refined NMR

structures of Zn(II)-CzrA from independent QM/MM MD calculations.

Zn(II) ions are shown as silver spheres and the zinc binding residues

(Asp84, His86, His970 and His1000) are depicted in licorice notation.

b The zinc ion coordination in a random model selected from the

calculated QM/MM MD NMR ensemble of structures. c An overlay of

metal-binding residue side-chain atoms at a metal binding site for the

calculated QM/MM MD NMR ensemble of structures. In a similar

manner, panel d shows a ribbon representation for the 2KJC ensemble

of NMR structures. e Arrangement of zinc binding residues at a metal

binding site for a random model for the 2KJC structural ensemble. f An

overlay of zinc binding residues for the 2KJC structural ensemble. The

zinc binding residues in panels a and d are presented from a different

angle compared to panels b, c, e and f. The backbone atoms of Asp84,

His86, His970 and His1000 were aligned to create figures c and f
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validate our previous unrestrained MD and QM/MM MD

simulations that found that the zinc-bound form of CzrA

adopts an open conformation (Chakravorty et al. 2012b).

Methods and application

The assisted model building with energy refinement

(AMBER) 11 suite of programs provides an integrated

platform for MD, QM/MM, metal ion force-field generation

and NMR-structure determination methods (Case et al.

2010; Case 2002; Bertini et al. 2011). All MD, QM/MM MD

based NMR refinement calculations were performed on a

potential energy surface described by the ff99sb force field

(Hornak et al. 2006). The force field parameters required to

represent the zinc ion and its coordinating ligands were

calculated using the metal center parameter builder (MCPB)

program that is available as part of the AmberTools package

(Peters et al. 2010; Chakravorty et al. 2012b; Roberts et al.

2012; Chakravorty et al. 2011; Case et al. 2010). The

Gaussian09 program was employed to perform electronic

structure calculations that were needed to develop the metal

ion force fields (Frisch et al. 2009). Structure-based and

conformational analyses were performed using the ptraj

module in AmberTools (Case et al. 2010), the PALES pre-

diction of alignment of structure software (Zweckstetter and

Bax 2000), the Maestro program (Suite 2012) and the visual

molecular dynamics (VMD) (Humphrey et al. 1996) visu-

alization program.

Simulations of metal ion bound proteins pose a unique

set of challenges. A variety of bonded (Chakravorty et al.

2012b; Lee et al. 2012; Yang et al. 2010; Vedani and Huhta

1990; Hoops et al. 1991; Li et al. 2008; Lin and Wang

2010), semi-bonded (Pang 2001), non-bonded (Deeth et al.

2009; Stote and Standing 1995; Wu et al. 2011; Ponomarev

et al. 2011), and polarizable force-field (Ponomarev et al.

2011; Wu et al. 2010) approaches have been proposed. The

bonded model approach is an accurate and standardized

implementation of the ‘‘pseudo-bond’’ or ‘‘dummy-cation’’

approach that is commonly used to model the metal ion

binding sties in NMR structure determination calculations.

Owing to its accuracy and comparative ease of generation,

Fig. 2 a Correlation of experimental backbone NH (1DNH) RDC

constraints with those calculated from a the 1R1V crystal structure of

Zn-bound CzrA (R = 0.944; y = 1.002x ? 0.036), b the average

NMR solution structure for the 2KJC ensemble (R = 0.988;

y = 0.999x - 0.078), c model 1 of the 2KJC ensemble of NMR

structures before (R = 0.934; y = 0.994x - 0.178) and d after the

metal ion refinement MRD-NMR procedure described here

(R = 0.999; y = 0.997x ? 0.017). R is the correlation coefficient

and the equation of the fitted line is in the form of y = mx ? c where,

‘m’ defines the slope of the line and ‘c’ the value of x at y = 0
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the bonded model approach has been widely used in MD

simulations and is our method of choice to represent zinc

and its coordinating ligands in these structure calculations

(Lin and Wang 2010; Peters et al. 2010). In this approach,

metal ion parameters are derived from geometry optimized

structures of the metal-bound complex. Based on metal

binding site geometry in the crystal structure of Zn(II)-

CzrA, the zinc ion is bound to Asp84, His86, His970 and

His1000 residues (Fig. 1) in a tetrahedral coordination

environment (Eicken et al. 2003). We had previously

determined the force field parameters for the Zn(II) coor-

dination environment in CzrA from density functional

theory (DFT) calculations performed at the TPSSKCIS/

Zn = LANL2DZ/6-31G* level of theory (Toulouse et al.

2002; Rey and Savin 1998; Frisch et al. 2009; Cramer and

Truhlar 2009; Ditchfie et al. 1971; Wadt and Hay 1985;

Hay and Wadt 1985). We have since calculated metal ion

parameters using the M052X, B3LYP, M06-L and M06-2X

(Cramer and Truhlar 2009; Zhao and Truhlar 2008) DFT

functionals as well. The charges for the metal ion and its

surrounding ligands were calculated according to the RESP

methodology (Hoops et al. 1991; Case et al. 2005; Cornell

et al. 1993). In order to remain consistent with our earlier

simulation studies of CzrA, we used our previously derived

parameters to represent the zinc ion and its ligating ligands

(Chakravorty et al. 2012b). The bonded model approach to

representing metal ions, however, suffers from an inability

to model changes in the metal coordination. In order to

account for such effects while accurately sampling protein

conformational ensembles, we employed semi-empirical

QM/MM MD calculations performed at the SCC-DFTB3/

ff99SB level of theory to supplement our classical simu-

lations (Seabra et al. 2007; Gaus et al. 2011). Such QM/

MM MD calculations have been extensively used to study

zinc bound proteins, such as in our previous studies of

CzrA and the enzymatic reactions in NaphB and protein

farnesyl transferase (Chakravorty et al. 2012b; Yang et al.

2012a; Yang et al. 2012b).

Model 1 of the 2KJC ensemble of NMR structures

(Arunkumar et al. 2009) provided a starting point for our

metal ion modeling approach. The structure was deter-

mined to be compliant with NOE restraints while not being

over-fitted to a smaller number of RDC restraints (Fig. 2).

Long NMR-biased MD simulations on the time-scale of

tens of nanoseconds allow the protein structure to sample

conformations representative of the entire ensemble and as

such remove dependencies associated with the starting

structure. Charged amino acids were modeled in proton-

ation states obtained from the H?? protonation state ser-

ver (Gordon et al. 2005), while the metal-ligating residues

were maintained in their metal-binding protonation states.

The protein structure was maintained in its biologically

active dimer state and was immersed in a periodically

replicated rectangular box of SPCE water molecules

allowing for an 8Å solvation shell around every protein

atom (Jorgensen and Tirado-Rives 2005). Explicit Cl- ions

were added to neutralize the net charge on the solvated

system (Joung and Cheatham 2008). Steered molecular

dynamics and energy minimization methods were

employed to bring the ligating residues into the zinc-bound

coordination geometry obtained from DFT calculations

performed at the TPSS/KCIS/LANL2DZ/6-31G(d) level of

theory (Case et al. 2010). The calculated zinc-coordinating

geometry was validated against the Zn(II) coordination in

the 1R1V crystal structure of Zn(II)-CzrA and our previous

QM/MM calculations (Eicken et al. 2003; Chakravorty

et al. 2012b). A Zn(II) ion was then introduced into each

metal binding site described by Asp84, His86, His97 and

His100 residues (Eicken et al. 2003). In the absence of an

experimentally determined structure, QM/MM methods

may be used to introduce the metal ion in its coordination

shell as demonstrated in our studies of Zn(II)-bound NmtR

and Cu(I)-bound W44M CusF (Lee et al. 2012; Chakra-

vorty et al. 2011).

Next, the solvated protein was energy minimized and

equilibrated using a well-defined procedure (Chakravorty

et al. 2009; Chakravorty et al. 2008; Chakravorty and

Hammes-Schiffer 2010). NOE restraints with a force con-

stant of 30 kcal/mol�Å2 were applied to the protein struc-

ture over the course of the equilibration process. Details of

the equilibration protocol have been provided elsewhere

(Chakravorty et al. 2012b; Chakravorty et al. 2009; Lee

et al. 2012) and are included as part of supporting infor-

mation. In brief, a five-step energy minimization protocol

was implemented to gradually minimize the protein in its

solvation environment followed by heating to 300 K over

200 ps of MD for a canonical ensemble (NVT) (Allen and

Tildesley 1987). The protein was further equilibrated for an

isobaric and isothermal ensemble (NPT) for 1 ns at 1 atm.

pressure (Allen and Tildesley 1987). Following the equil-

ibration phase, a NOE restrained MD simulation (760

restraints) was propagated at 300 K for 10 ns using a

Langevin thermostat. A time step of 2 fs was employed

during this simulation and frames were collected once for

every 1,000 steps of MD. Over the course of this simula-

tion, long-range electrostatics were calculated using the

particle mesh Ewald method (PME) and the system tem-

perature was maintained using Langevin Dynamics (Allen

and Tildesley 1987). The SHAKE algorithm was utilized to

maintain heavy atom-hydrogen bond lengths and the

translational center-of-mass motion was removed every

100 steps (Allen and Tildesley 1987). The protein back-

bone RMSD was determined to be stable over the course of

this simulation. The protein was then gradually cooled to

0 K over 200 ps and further energy minimized to obtain

energy minimized NOE-constrained protein structure. No
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significant NOE violations ([0.3 Å) were observed and the

structure passed all structure checks performed using the

Maestro program (Suite 2012).

The energy minimized NOE-restrained structure was

then fitted to RDC information to obtain an NOE and RDC

restraint compliant structure. 112 NH RDC restraints

(1DHN) were applied to each protein substructure in addi-

tion to the NOE restraints at this stage (Arunkumar et al.

2009). Owing to the angular dependence of RDC restraints

and their smaller numbers, specific care was taken to not

over-fit to them. The RDC fitting cycle was performed in

multiple stages starting with a force constant of

0.05 kcal mol-1 Å-2 applied to every RDC restraint until a

correlation of *1 and an offset of *0 Hz were achieved

between RDC values obtained from the calculated structure

and the experimentally determined values. During this

phase, the previously energy minimized NOE-constrained

protein structure was run through an abridged version of

the NMR refinement process while employing both NOE

and RDC restraints to obtain an RDC and NOE refined

structure. Details of the process are provided in supporting

information. In the next stage of the refinement protocol,

the metal ions were treated quantum mechanically to

account for possible artifacts and deficiencies of the bon-

ded model of Zn(II). For these QM/MM calculations the

Zn(II)-binding residues (Asp84, His86, His97 and His100)

and the zinc ions were included in the QM region. The

metal binding residues were introduced into the QM

regions by means of side-chain cuts between the a and b
carbon atoms. The remaining simulated system was mod-

eled using the ff99SB force field (Hornak et al. 2006).

During this phase, the NOE and RDC fitted structure was

further energy minimized at the SCC-DFTB3/ff99SB level

of theory over two steps. In the first stage, the metal ion and

its ligating residues were energy-minimized, while in the

second stage the entire solvated system was energy mini-

mized. Both minimizations steps were performed with

NOE and RDC restraints to obtain the QM/MM energy-

minimized NOE ? RDC structures.

The RDC fitting cycle was performed with force constants

of 0.05, 0.25 and 0.50 kcal mol-1 Å-2 applied to every

RDC restraint. The resulting energy minimized RDC ?

NOE refined structures were checked for consistency with

the AMBER and PALES programs. While a good correlation

(*1) was found between the structure-derived RDC values

and experimental values, a large offset remained in the RDC

refinement performed with a force constant of 0.05 kcal

mol-1 Å-2. Energy minimization with a force constant of

0.25 kcal mol-1 Å-2 provided a structure with a correlation

value of *1 and offset of 0.01 Hz, showing a marked

improvement on the starting structure (Fig. 2). Only two

NOE violations in excess of 0.5 Å were observed in this

structure. Furthermore, Ramachandran plots (Figure SI.3)

and a comparison of protein backbone carbon Ca–Ca dis-

tances (Figure SI.4) for the Zn(II)-crystal structure (panel a),

model 1 of the 2KJC NMR ensemble of structures (panel b),

NOE-refined energy minimized structure (panel c) and the

QM/MM energy minimized NOE ? RDC structures (panel

d) reveals that CzrA remains folded and maintains attributes

that closely resembled the crystal structure. Thus, a force

constant of 0.25 kcal mol-1 Å-2 was chosen for the RDC-

fitting process.

In the final stage of the MRD-NMR structure refinement

methodology, we generated an accurate ensemble of

solution structures of Zn(II)-CzrA by collecting 120 ns of

NOE and RDC restrained MD (NOE ? RDC restrained-

MD) data along with an additional 12 ns of QM/MM MD

calculations. For this, ten independent simulations starting

from the QM/MM energy minimized NOE ? RDC refined

structure of CzrA were equilibrated and propagated for

12 ns at 300 K. Each MD simulation was followed by over

1 ns of QM/MM MD refinement in which the zinc ion and

its ligating residues were treated at the SCC-DFTB3 level

of theory while the water molecules and remaining protein

atoms were modeled using the ff99SB force field (Hornak

et al. 2006; Seabra et al. 2007; Gaus et al. 2011). In

addition to these simulations, we performed 20 ns of NOE-

restrained MD followed by 2 ns of QM/MM MD simula-

tions on the NOE-refined energy minimized Zn(II)-CzrA

structure, and 100 ns of unrestrained (not restrained by

NMR data) MD starting from the 2KJC structure. The

ensembles of structures derived from these simulations

would serve to validate our previously obtained results

from MD simulations of CzrA and gauge the performance

of unconstrained MD simulations and NOE-constrained

MD simulations in correlating to experimentally observed

backbone 1DNH RDC values. A detailed description of the

effort for a skilled user is provided as part of SI.

Results and discussion

Staphylococcus aureus CzrA is an extensively studied

member of the ArsR/SmtB family of metal ion sensing

transcriptional repressors (Chakravorty et al. 2012b; Pen-

nella et al. 2006; Arunkumar et al. 2009; Eicken et al. 2003;

Pennella et al. 2003; Grossoehme and Giedroc 2009) and

serves as an excellent model system to expand on our

understanding of the allosteric mechanism of regulation in

metalloregulatory proteins (Giedroc and Arunkumar 2007).

We successfully determined a structural ensemble for the

zinc-bound form of CzrA (Fig. 1a–c) by effectively using

NOE and RDC data in combination with modern MD and

QM/MM MD techniques to model metal ion coordination.

120,000 protein structures were collected from the NOE and

RDC restrained MD and 12,000 protein structures were

130 J Biomol NMR (2013) 56:125–137
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collected from the NOE and RDC restrained QM/MM MD

simulations to form these ensembles. No significant dif-

ferences were observed between the structural ensembles

obtained from NOE and RDC restrained MD (NOE ? RDC

restrained-MD) and the QM/MM MD refinement calcula-

tions in terms of calculated RMSD values and radius of

gyration values (Figure SI.4) suggesting that the classical

force field accurately represents the metal-bound protein.

Owing to these similarities, the two structural ensembles

were merged to create the MRD-NMR structural ensemble

whose atomic coordinates have been deposited in the pro-

tein data bank (PDB code 2M30). These simulations benefit

from rapid convergence to an equilibrated state owing to the

large number of restraints on the protein structure. A cal-

culated ensemble comprising of 132,000 protein confor-

mations was collected over the course of NMR-biased MD

and QM/MM MD simulations and was found to correlate

well with experimentally observed backbone 1DNH RDC

values (Figure SI.5). The calculated MRD-NMR structural

ensemble provides a detailed and accurate ensemble rep-

resentation of Zn(II)-bound CzrA in solution and strongly

benefits from correctly portraying the first-shell and second

shell coordination effects of the metal ion binding to CzrA.

In comparison to the NOE and RDC restrained MRD-NMR

ensemble of refined structures (MRD-NMR structural

ensemble), protein conformations visited over the course of

our unconstrained MD, and NOE-restrained MD simula-

tions were NOE compliant (all deviations \0.5 Å), but

failed to match the experimentally obtained RDC values as

well as the NOE ? RDC-fitted ensemble of protein con-

formations (Fig. 3a). Upon analyzing the distribution of

deviations from the experimentally observed RDC values,

we found that the structural ensembles from these simula-

tions successfully matched the experimentally observed

RDC data in a time-averaged manner as would be experi-

enced in an experimental NMR setting (Fig. 3b). These

results are in agreement with previous studies (Azurmendi

and Bush 2002; Iwahara et al. 2006; Showalter et al. 2007;

Marsh and Forman-Kay 2009; Stelzer et al. 2009; Simone

et al. 2011) that accurately calculated RDC data from MD

simulations and suggest that MD simulations on biologi-

cally relevant time-scales can potentially capture the

structural characteristics of the system under investigation.

An aligned representation of the Zn(II) bound crystal

structure, and a randomly selected model from the 2KJC

NMR structural ensemble and the MRD-NMR structural

ensemble (Figure SI.7) reveals that the fold is robustly

maintained over the course of these simulations. In our

refined model, the Zn(II) bound structure of CzrA main-

tained its zinc coordination with Asp84, His86, His97 and

His100 residues in agreement with the geometry observed

in the crystal structure (Fig. 1b). The MRD-NMR ensem-

ble of structures presents a significant improvement on the

2KJC structural ensemble in which the metal ion binding

residues were not optimally arranged for metal ion binding

as a result of not modeling the zinc ion during the structure

determination process (Fig. 1d–f). While the bonded model

representation maintained a fixed coordination for the

metal ion, the QM/MM MD simulations provided an

opportunity to test the zinc coordination environment in

CzrA. We found that the metal coordination bonds are

maintained over the course of the QM/MM MD calcula-

tions, though the individual bond distances varied within a

range of ±0.1 Å from the observed distances in the crystal

structure owing to inadequacies in the SCC-DFTB3

Hamiltonian (Fig. 1c) (Settergren et al. 2008). While such

errors in bond lengths may be considered reasonable, they

may be resolved by utilizing DFT or ab initio based

methods implemented in the AMBER suite of programs

Fig. 3 a Normalized population distribution of the Bax regression

slopes (Zweckstetter and Bax 2000) indicating the quality of fitting

between the experimental backbone NH(1DNH) RDC constraints with

those calculated for ensembles of structures from NOE ? RDC-

restrained MD and QM/MD simulations (MRD-NMR structural

ensemble), NOE-restrained MD simulations and unrestrained MD

simulations of Zn(II)-CzrA. A higher regression slope indicates a

better fit to the data. b Normalized population distributions of

calculated NH(1DNH) RDC-deviations from experimentally deter-

mined values for the ensemble of structures from unrestrained MD

simulations, NOE restrained MD simulations, and NOE ? RDC

restrained MD simulations of Zn(II)-CzrA
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during the QM/MM MD phase of the metal ion structure

refinement protocol (Case et al. 2010).

The MRD-NMR ensemble of structures sheds further

light on the mechanism of allosteric regulation in CzrA. An

interprotomer zinc-dependent second-coordination shell

hydrogen bond between the conserved metal-binding ligand

His97 and His670of the aR helix extends to form a specific

hydrogen-bonding pathway that connects the metal binding

region to residues in the DNA-binding region (Fig. 4)

(Eicken et al. 2003; Campanello et al. 2013). This hydrogen

bond is only observed in the zinc-bound form of the protein,

and as such has been implicated in playing a major role in

the mechanism of allosteric regulation in CzrA (Eicken

et al. 2003; Arunkumar et al. 2009; Chakravorty et al.

2012b; Campanello et al. 2013). Computational studies

suggest that this hydrogen bond is strengthened on the order

of *10 kcal/mol on metal ion binding compared to an apo

allosteric form of the protein (Chakravorty et al. 2012a). In

excellent agreement with previous structural (Eicken et al.

2003), thermodynamic (Grossoehme and Giedroc 2009;

Campanello et al. 2013) and MD studies, (Chakravorty et al.

2012b) we find that this short hydrogen bond and the

resulting hydrogen bonding pathway does indeed exist in

the Zn(II) bound CzrA in solution (Fig. 4a). Upon com-

paring to the 2KJC ensemble of NMR structures, we find

that the zinc-lacking model is unable to correctly describe

the nature of this hydrogen bond (Figs. 4b and SI.8(b)). It

should be noted that while a hydrogen bond restraint

between His97 and His670 was included in the 2KJC NMR

structure calculations, no such constraints were used in

these simulations (Arunkumar et al. 2009). In addition to

this zinc-dependent hydrogen bond, we find that Asp83, a

conserved residue that neighbours the invariant metal-

binding residue Asp84, participates in an interaction

Fig. 4 a The zinc mediated His97–His670 hydrogen bond that forms

a part of the hydrogen-bonding pathway in Zn(II)-CzrA. The zinc ion

is shown as a silver sphere while His97 and His670 residues are in

licorice notation. The His97–His670 hydrogen bond is indicated with a

dotted black line. b Normalized population distribution of heavy atom

hydrogen bond distances (Ne–O) for the 2KJC ensemble of structures

and the MRD-NMR ensemble of structures. The crystallographically

determined His97–His670 distance is shown for comparison

Fig. 5 Ribbon representation of a the 1R1 V crystal structure of

Zn(II)-CzrA and b a MRD-NMR refined structure of Zn(II)-CzrA

near the metal binding site. Interactions between Asp83 and Lys70

(blue dotted line) and Asp83 and Leu68 (red dotted line) are

indicated. c Normalized population distributions of the heavy atom

hydrogen bond distances for the metal ion refined RDC ? NOE

constrained MD and QM/MM MD ensemble of structures
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observed in the crystal structure of Zn(II)-CzrA (Fig. 5).

This interaction was absent in the 2KJC ensemble of NMR

structures (Arunkumar et al. 2009). The backbone carbonyl

group of Asp83 now interacts with the positively charged

side-chain of the b-wing residue, Lys70, while the back-

bone NH group of Asp83 interacts with the backbone car-

bonyl group of Leu68, possibly allowing Asp83 to

communicate metal-binding to the b-wings. The energetic

contribution of Asp83 in mediating zinc-dependent allo-

steric switching in CzrA is small, but significant as mea-

sured with D83N CzrA (Campanello et al. 2013).

CzrA modulates its conformational dynamics to selec-

tively sample functional allosteric ensembles that increase

or decrease its binding affinity for the CzrO operator

(DNA) or metal ion (Arunkumar et al. 2009; Chakravorty

et al. 2012b). The 2KJC ensemble of structures and NMR

data reveal that the zinc-bound protein adopts an open

conformation that significantly reduces the DNA-binding

affinity (Arunkumar et al. 2009). Incorporation of the metal

ion chelate during the NMR structure refinement process

yields more accurate statistical data. The interprotomer

Ser54-Ser540 and Gly75-Gly750 Ca-distances provide

useful metrics to measure the interprotomer distances

between the aR helical DNA reading heads and the b-wing

tips, respectively, and help distinguish between an ‘‘open’’

or ‘‘closed’’ conformation (Figs. 6 and SI.9). In the open

conformation, the DNA reading heads of the aR helices are

widely separated while the b-wings lift upwards, bringing

the wing tips closer. In addition, the Ser54–Ser65–Ser540

and Ser54–Ser650–Ser540 Ca ‘‘torsion’’ angles describe the

degree to which the aR helices are ‘‘torqued’’ relative to

the core of the dimer. A ‘‘flatter’’ CzrA dimer (less torque)

is less conducive to DNA binding and consequently cor-

responds to a lower DNA-binding affinity conformation. In

agreement with our previous data, we find that the MRD-

NMR refined ensemble of structures sample interprotomer

Ser54–Ser540 and Gly75–Gly750 Ca-distances and Ser54–

Ser65–Ser540 and Ser54–Ser650–Ser540 Ca-angles that are

indicative of the weakly DNA-binding ‘‘open’’ conforma-

tion (Figs. 6 and SI.9) as compared to similar metrics

Fig. 6 a Ribbon representation of the MRD-NMR structure of zinc

bound CzrA indicating residues used to measure changes between the

open and closed conformations. Zinc ions are shown as silver spheres

and protein residues are shown in licorice depiction. Residues

involved in metal ion binding are colored lilac. Normalized popu-

lation distributions of b Ser54–Ser540 and c Gly75–Gly750 inter-

subunit Ca–Ca distances and d Ser54–Ser65–Ser540 and Ser540–

Ser650–Ser54 inter-subunit Ca–Ca–Ca angles for the 2KJC ensemble

of NMR structures of Zn(II)-CzrA, the 2KJB ensemble of NMR

structures of DNA-bound CzrA, and the metal ion refined

RDC ? NOE constrained MD and QM/MM MD ensemble of

Zn(II)-CzrA structures. Distances from the 1R1V Zn(II)-bound

crystal structure of CzrA are also indicated
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obtained from the 2KJB ensemble of DNA-bound apo-

CzrA that exists in the ‘‘closed’’ conformation (Arunkumar

et al. 2009). In general agreement with the 2KJC ensemble

of NMR structures, we also find here that metal ion refined

solution structures of CzrA adopt a more open conforma-

tion when compared to that of the 1R1V crystal structure.

The spread of these distances and angles for the

NOE ? RDC restrained ensemble are in agreement with

the range of distances sampled over our previous MD

simulations of Zn(II)-CzrA, thus validating our previous

study of the various allosteric forms of the transcriptional

repressor involving unconstrained MD (Chakravorty et al.

2012b). A further analysis of the MRD-NMR Zn(II)-CzrA

structural ensemble is provided in SI.

Conclusions

In this study we show that the zinc coordination in NMR

protein structures may be refined by coupling the NMR

structure determination protocol with metal ion force field

based MD simulations and QM/MM calculations (Case

2002; Peters et al. 2010; Bertini et al. 2011). Using the

MRD-NMR methodology, we refined the zinc-ion coordi-

nation in the paradigm zinc sensor protein S. aureus CzrA

to obtain an accurate solution structure representation of

the allosterically inhibited zinc-bound state. We find that

our classical bonded model approach accurately models the

metal ion and its effect on protein structure in the NMR

structure calculation process. Our ensemble of metal ion

coordination refined structures allowed us to analyze the

atomistic networks in greater detail and understand the

mechanism of allosteric regulation in this system in solu-

tion not previously possible. NOE and RDC restraint-based

simulations can identify multiple conformations or Markov

states that may play a role in biological function (Chen-

nubhotla and Bahar 2006). Indeed, this approach will aid in

protein folding studies by presenting additional metal ion

based restraints (Lange et al. 2012; Thompson et al. 2012)

and help in the design and structure determination of novel

metal-templated proteins (Brodin et al. 2010; Salgado et al.

2010; Salgado et al. 2011). QM/MM MD metal ion NMR-

refinement calculations are particularly poised to tackle

protein structures with previously undetermined metal-

binding conformations (Chakravorty et al. 2012a; Lee et al.

2012). While the MCPB program (Peters et al. 2010) is

available as part of the AMBERTools package (Case et al.

2010), this protocol could potentially be implemented to

treat metal ions in the AMBER-based portal server for

NMR structures (AMPS-NMR) as part of the WeNMR

portal (Bertini et al. 2011). The presented MRD-NMR

methodology may be implemented during the NMR

structure calculation or subsequent structure-refinement

methods, and should be broadly applicable in the field of

solution NMR structure determination of metal binding

proteins.
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