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Abstract NmtR is a Ni(II)/Co(II)-specific repressor

expressed in Mycobacterium tuberculosis, which regulates

the transcription of a membrane transporter proposed to

mediate cytoplasmic Ni(II)/Co(II) efflux. Here we report

the backbone and side chain resonance assignments of the

apo-NmtR and the backbone assignments of Ni(II)-bound

form of NmtR.
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Biological context

Mycobacterium tuberculosis (Mtb) is an obligate pathogen

of human tuberculosis that encodes a remarkable diversity

of known and putative metal ion transporters. These

include multiple putative P-type ATPases, ABC trans-

porters, and cation diffusion facilitators (CDF) which col-

lectively allow the bacterium to respond to a range of host-

killing mechanisms while maintaining intracellular metal

homeostasis (Agranoff and Krishna 2004). A large number

of metalloregulatory proteins in Mtb regulate the expres-

sion of a variety of transporters. Among them, NmtR

represses the transcription of ctpJ which encodes a P-type

ATPase metal transporter at low Ni(II) concentrations.

At high Ni(II) concentrations, NmtR binds Ni(II) and dis-

sociates from the DNA operator, allowing for expression of

CtpJ which exports Ni(II) from the cytoplasm (Agranoff

and Krishna 2004; Campbell et al. 2007). NmtR belongs to

the arsenic repressor (ArsR) family of metal sensor proteins

that adopt a typical winged-helix homodimeric fold and is

classified as an ‘‘a5’’ sensor within this large family of

repressors (Osman and Cavet 2010). NmtR binds Ni(II) and

Co(II) to a pair of interprotomer sites adopting octahedral

coordination geometry that is proposed to include four

metal ligands from the C-terminal a5 helix (Asp910, His930,
His104 and His107) and two ligands from the extreme

N-terminus, including the a-amine of Gly2 (the N-terminal

Met is processed) and the side chain of His3 (Reyes-

Caballero et al. 2011). Although previous studies have

provided detailed insights into metal-induced allosteric

switching mechanisms of several ArsR family proteins

(Arunkumar et al. 2009) the precise details of the allosteric

regulation of NmtR by Ni(II) remain unclear. Elucidating

the solution structure and dynamical properties of NmtR

is critical to understanding the molecular mechanism of

Ni(II)-mediated negative allosteric regulation of DNA

operator binding (Pennella et al. 2003). Here we report

sequence specific 1H, 13C and 15N assignments of apo- and

Ni(II)-bound NmtR.

Methods and experiments

Protein expression and purification

NmtR expression and purification was essentially carried

out as described previously (Pennella et al. 2003; Reyes-

Caballero et al. 2011). In brief, the nmtR coding region

was amplified by polymerase chain reaction (PCR) from
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M. tuberculosis H37Rv DNA ligated to pGEM-T (Promega)

prior to subcloning into the NdeI/EcoRI sites of pET29a

(Novagen). NmtR was expressed in E. coli BL21(DE3) and

purified by polyethylenimine (PEI) precipitation of the lysis

supernatant, followed by two successive ammonium sulfate

fractionations (35 and 70 %) and dissolution of the 70 %

ammonium sulfate pellet in 25 mM MES buffer (pH 6.0),

0.1 M NaCl, and 5 mM EDTA in preparation for a SP (sul-

fopropyl)-Sepharose chromatography. Peak SP factions were

pooled and subjected to Q-Sepharose chromatography in

25 mM Tris (pH 8.0) and 0.05 M NaCl, with a final polishing

on a G75 preparative grade gel filtration column run in 10 mM

Hepes (pH 7.0) and 0.2 M NaCl buffer. The uniformly
13C- and 15N-labeled protein was expressed in M9 media

containing 15NH4Cl and 13C-glucose and purified in exactly

the same way.

NMR spectroscopy

Samples for NMR spectroscopy were prepared in 10 mM

Hepes, pH 7.0, 100 mM NaCl as 10 % 2H2O/90 % H2O

mixture or 100 % 2H2O at protomer protein concentrations

ranging from 0.35 to 0.50 mM. All NMR experiments were

performed on a Varian DDR 600 or 800 MHz spectrometer

fitted with cryogenic probe systems at 310 K in the

METACyt Biomolecular NMR Laboratory at Indiana

University. NMR spectra were referenced to external DSS.

NMR data processing and analysis were performed using

Fig. 1 1H–15N HSQC spectrum of apo-NmtR. Residue numbers are labeled on the crosspeaks. Crosspeaks from the middle of the spectrum are

shown in the inserted box, right

Fig. 2 1H–15N HSQC spectrum

of Ni(II)-bound NmtR. Residue

numbers are labeled on the

crosspeaks
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NMRPipe (Delaglio et al. 1995) and NMRView (Johnson

and Blevins 1994). Sequential backbone resonance

assignments were obtained using standard triple-resonance

NMR spectroscopy: HNCA (Grzesiek and Bax 1992),

HN(CO)CA, HNCACB (Wittekind and Mueller 1993), and

CBCA(CO)NH (Grzesiek and Bax 1992). Assignments of

side chain resonances were made using three-dimensional

HCCH-COSY (Bax et al. 1990), H(CCO)NH-TOCSY

(Montelione et al. 1992; Grzesiek et al. 1993) and

C(CO)NH-TOCSY (Grzesiek et al. 1993) experiments.

Fig. 3 TALOS? derived

backbone torsion angles and

secondary 13Ca chemical shifts

of apo-NmtR (a, b) and Ni(II)-

NmtR (c, d). 13Ca shifts

calculated by subtraction of

published random coil values

from the experimental 13Ca
chemical shifts for apo-NmtR

(b) and Ni(II)-NmtR (d). Filled

circles phi angles, open circles

psi angles, filled diamonds

secondary 13Ca chemical shifts.

A secondary structure schematic

based on TALOS? analysis is

shown at the top panels a and

c for the apo- and Ni(II)-loaded

NmtR, respectively
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Assignments and data deposition

Apo-NmtR (119 residues; residues 2–120) purifies as a

dimer on a G75 gel filtration column with the N-terminal

Met1 processed (Reyes-Caballero et al. 2011). The 1H–15N

HSQC spectrum (Fig. 1) shows &123 cross peaks con-

sistent with a symmetric homodimeric state under the

solution conditions used for NMR studies. Backbone 1H,
13C, and 15N assignments of NmtR have been completed

to 96 %. A total of 108 resonances of the 113 expected

non-proline residues were assigned, with backbone amide

resonances corresponding to Gly2, His3, Asp91, Thr92,

and His93 not assignable in this state. Figure 2 shows the
1H–15N HSQC spectrum of Ni(II)-bound NmtR. The
1H–15N correlations for 25 residues (residues 4–10, 34, 60,

61, 82, 83, 94, 96, 97, 101–110) disappear upon binding

of the paramagnetic Ni(II) ion to each site on the dimer.

Backbone 1H, 13C, and 15N assignments of Ni(II)-NmtR

have been completed for 83 of the 113 expected non-pro-

line residues. A TALOS? (Shen et al. 2009) analysis of

apo-NmtR (Fig. 3a, b) and the allosterically inhibited

Ni(II) form (Fig. 3c, d) each reveals the presence of five

a-helices and two short b-strands; this close correspon-

dence between the two conformers is consistent largely

with a Ni(II)–induced quaternary structural transition that

is most strongly linked to allostery (Arunkumar et al.

2009). The 1H, 13C, 15N resonances for both apo- and

Ni(II)-NmtR have been deposited in the BioMagResBank

database (http://www.bmrb.wisc.edu) under the accession

numbers 18003 and 18326 for apo- and Ni(II)-NmtR,

respectively.
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